
International Journal o f  Thermophysics, Vol. 9, No. 5, 1988 

Electrical Conductivity, Self-Diffusion, and Volume 
Expansion of Alkali Halides at the Melting Point 1 

B. H.  A r m s t r o n g  2 

In an earlier paper, Heisenberg's uncertainty principle was invoked at the 
melting point Tm of crystalline solids to provide fundamental justification for 
Lindemann's melting taw and to compute diffusion coefficients of several alkali 
halides. The uncertainty principle defines breakdown of Debye zone boundary 
(ZB) phonons as valid collective excitations when phonon energies and line 
widths due to anharmonicity become comparable at Tin. Upon breakdown, 
random, high-frequency single-particle motion or "partial decoupling" of crystal 
ions sets in. Lifetimes of these single-particle ZB motions are determined from 
the "minimum-uncertainty product" inequality by assuming that it becomes an 
equality at T,, for ZB phonons. The present paper addresses improved for- 
mulation of that work and extended application to ionic electrical conductivities 
of 18 molten alkali halides at T m. It is shown that use of the Debye model 
produces an approximate lower bound to the mean free time, not the 
unconstrained direct estimate previouslu implied. This feature is generally reflec- 
ted in results for ionic conductivities and alkali halide diffusion coefficients for 
which comparison experimental data were found. However, in spite of this 
lower-bound formulation and the simple nature of the computation, the results 
compare favorably with experiment. A model of random single-particle 
harmonic motion superimposed on the lower-frequency collective motion is 
proposed to account for volume expansion accompanying the partial decoupling 
for hard-sphere ions. Experimental comparisons for 15 alkali halides show the 
decoupling volume change to account largely for the total volume change of 
melting (in the hard-sphere approximation), yielding a closer agreement with 
experiment than recent calculations aimed explicitly at the total volume change. 
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1. INTRODUCTION 

It was pointed out earlier [1 ] that the Heisenberg uncertainty principle 
(HUP) could be invoked at the melting temperature Tm of crystalline 
solids to provide fundamental justification of the Lindemann melting law 
[-2, 3] This justification was based on the observation that, for maximum- 
lattice frequency phonons, phonon line widths due to anharmonicities 
become comparable to phonon energies at Tm [3, 4, 5]. The high-tem- 
perature three-phonon transition rate given by Roufosse and Klemens [-6] 
was used in conjunction with the HUP to derive Lindemann's law in the 
context of the Debye approximation. The approach of Ref. 1 is reviewed 
and clarified herein and applied to self-diffusion and electrical conductivity 
of molten alkali metal halides at the melting point. Additional results for 
monatomic melt self-diffusion coefficients are discussed briefly to indicate 
generality for the theory. A "partial decoupling" of maximum-frequency 
lattice modes at Tm is postulated wherein single-particle motion replaces 
collective motion on the time scale of these modes. Heuristic arguments are 
presented to account for this effect. A model is presented which associates a 
volume increase with the partial decoupling for hard-sphere atoms (ions), 
since they will take up more volume while in random relative motion 
than when moving synchronously. This volume increase turns out to 
approximate the total increase in fusion for alkali halides, which are known 
to display hard-sphere behavior. Thus, partial decoupling may account for 
the transition from the solid to the liquid phase, since the volume increase 
associated with fusion is sufficient to allow the atoms to slip past each 
other, engage in free diffusion, and break down the long-range crystalline 
order. 

2. USE OF THE UNCERTAINTY PRINCIPLE AT THE MELTING 
POINT 

We start with the HUP for energy and lifetime uncertainties [-7, 8] 
associated with a phonon of angular frequency COq (here q is meant to 
imply wave vector and polarization) reduced to the form 

AOJq'~(T, O~ q) ~ 1 (1) 

where ~(T, ~q) is the lifetime due to all anharmonic interactions. An ideal 
crystal is assumed and T is absolute temperature in kelvins (K). The trans- 
ition rate 1/~(T, O~q) increases linearly with T above the Debye temperature 
TD [3, 6]. Hence, the line width must similarly increase according to 
Eq. (1). This inequality is the "minimum-uncertainty product" form of the 
HUP (for which the equality is attained only for Gaussian distributions of 
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the values of the uncertainties [7, 8]). We let [2q represent the maximum 
frequency of the branch associated with q, so that AO)q ~ ff2q. Equation (1) 
then yields 

~(T, ~oq)~> 1/(2s (2) 

Expressed in terms of the transition rate, this expression, 

I/"c(Z, O,) q) ~ 2~q (3) 

establishes an upper limit to the total anharmonic transition rate. Since 
anharmonic phonon transition rate expressions generally increase 
monotonically with COq, we assume that the maximum transition rate is 
achieved for COq =/2 u. Our model of melting is therefore based on the 
assumption that 

1/'r( Tm, ~"2 q) ~ 2[2 u (4) 

for longitudinal branches. This is, of course, the condition referred to above 
that expresses the loss of validity of phonons in the mode q as collective 
excitations. (If it should happen that 1/r---rAff2q as Oq approaches its 
maximum value, where A is independent of q, then this mode failure 
condition will be met simultaneously for all relevant modes. Although such 
behavior would explain the suddenness of the melting transition and is 
possible [9], it would be difficult to establish in general even if true.) We 
further assume that single-particle motion sets in for time intervals of the 
order of 1/(2Oq) when Eq. (4) is satisfied, since such intervals are no longer 
included in the spectrum of collective excitations. 

To obtain a mean lifetime for the proposed single-particle motion, we 
need to average v(Tm, 12q) of Eq. (4) over all longitudinal [2q of the 
Brillouin zone. Calling this mean rr~, Eq. (4) yields 

"c M = (1 / (212q) )  (5) 

where the angle braces signify the appropriate average. Because of the 
complexity of phonon spectra and of the Brillouin zone geometry, we must 
now resort to the Debye approximation [2] for further progress. We then 
have only to deal with a spherical zone with the maximum frequency and 
wave number on its surface, the Debye zone boundary (ZB). In this 
approximation, and by appeal to the fact that a harmonic average is less 
that a direct average (Schwartz's inequality), Eq. (5) may be written 

/7 M ~ l / ( 2 (~"~q ) )~  1/(203D) (6) 

where co D is the Debye angular frequency. Thus, the inverse of twice the 
Debye frequency provides an approximate lower bound for the mean free 
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time of the postulated single-particle motion. The distance •ZB which a 
Debye ZB phonon can travel in time (2~OD) 1 is 

2zB = V/(2COD) = a/[2(6n 2)1/3 ] (7) 

where a 3 is the volume per atom and v is the Debye mean velocity [10]. 
Thus, at high temperatures, ZB phonons are highly localized [6, 11]. 
Although the precise numerical value of the Debye result in Eq. (7) cannot 
be taken seriously, the order of magnitude of localization to an interatomic 
distance is important. 

It, is interesting to compare the distance traveled by an ion and by a 
ZB phonon at high temperatures. Consider a Na § ion moving with ther- 
mal velocity (3kBT)m/M= 1.15 x 105 cm-s -1 at the melting temperature 
of NaC1. In the time (2COo) 1= 1.26 x t0-14s given by the NaC1 Debye 
frequency, it would move a distance d =  1.49 x 10 9 cm. The mean free 
path 2zB of the Debye ZB phonon has the value 0.13a, which is 
3.7 x 10 -9 cm for a=2.87/~ computed from the NaC1 lattice constant 
extrapolated to the melting point [18]. Distances of this order of 
magnitude are insufficient, on the average, to permit escape of the Na + ion 
from its cage of nearest neighbors, as the radius of its nearest-neighbor 
shell is about 2.8/~. 

High-frequency diffusive motion has been discussed theoretically by 
Egelstaff [13] in terms of an "effective mass" which accounts for the 
impeding effect of neighbors. However, we assume that the atoms remain 
trapped within their nearest-neighbor cages until there is sufficient high- 
frequency, single-particle motion of all the atoms to expand the lattice so 
that each can escape, viz., there is sufficient room such that each can slip 
past the other, at which point the liquid state has been achieved. Thus, we 
assume that free diffusion occurs without interference from neighbors 
because of the short time and distance intervals involved. This permits use 
of the true mass and allows us to avoid ambiguous or adjustable 
parameters. 

We close this section with a heuristic description of the breakdown of 
maximum-frequency mode validity. Recall that phonon theory starts from 
specification of the motion of an atom in a crystal relative to a lattice point 
i, where 

e i ~- lii -~- a i (8) 

is the position vector to the atom from some coordinate origin fixed in the 
crystal [2J. The vector to the lattice point i is denoted by g, so that ffi is 
the vector displacement of the atom relative to the lattice point. Quan- 
tization of the relative displacements ffi lead to phonon theory. The normal 
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modes of cooperative oscillation are traveling-wave Fourier components of 
the vectors ffi. For a time average taken over fi, denoted by (~ ) ,  including 
any number of complete periods of oscillation, the result will always be 
( f i )  = ~, since ]'is the equilibrium position or center of oscillation, and the 
periodic di obey (ffi~=0. However, as T is increased, the highest- 
frequency modes will ultimately fail to sustain propagating periodic motion 
because of the increasing anharmonicity. As indicated above, we assume 
that this occurs at the melting point. The Fourier amplitudes of the 
highest-frequency traveling waves must die out, or become "overdamped" 
[-5]. However, it will still be possible to perform a localized Fourier expan- 
sion of the motion of the fi which will include (in general) all frequencies. 
The atom at i will not stop moving with high-frequency components. But 
the high-frequency components will no longer be normal modes of the 
phonon field. The expansion of the 9i in terms of traveling waves will now 
be incomplete. A complete description of the motion must contain some 
localized terms comprising single-particle motion, which, in general, will 
not be periodic. The time average (Fi~ mentioned above will no longer 
produce a constant value of ~ independent of the averaging period. Non- 
zero contributions will appear from the aperiodic motion which will add 
incrementally to the ~ and thus represent irreversible changes in atomic 
positions, viz., diffusion. We assume that smaller-q, lower-OJq motion con- 
tinues to exist as valid collective (phonon) excitations since the anharmonic 
transition rate decreases strongly with decreasing OJq E6]. 

3. A HARD-SPHERE M O D E L  FOR THE MELTING TRANSITION 

We have proposed above that longitudinal ZB phonons lose validity 
as collective excitations and that single-particle motion sets in on their time 
scale at Tin. We now discuss the nature of the single-particle motion. The 
motion of an atom trapped in a cage of nearest neighbors, while par- 
ticipating in single-particle motion at a high frequency, suggests that the 
transition to the liquid state may occur through an intermediate stage of 
independent Einstein oscillator behavior at or near the frequency of the no- 
longer-valid ZB phonons. In this picture, ZB collective oscillations first 
decouple into individual, localized oscillators vibrating independently of 
each other. Such independent vibrations sweep out more volume than the 
previous synchronous vibrations. So in this step, the lattice must expand. 
We can estimate the expansion for hard spheres, and if it turns out to 
approximate the fusion volume expansion, atoms can slip past each other, 
lose their long-range order, and arrive at the liquid state. This model is 
frankly heuristic; we are unable to produce a mathematical description for 
a transition from collective phonon modes to independent oscillator modes 
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[-14] even though it is universally accepted that collective behavior loses 
importance toward high temperatures and the independent Einstein 
oscillator description becomes valid. 

We conjecture the following scenario for breakdown of the highest- 
frequency phonon modes as T ~  Tin, Z-I(COD) --' 2COD, and the ZB phonon 
line width becomes equal to the frequency 2099. (We refer, for simplicity, to 
these highest-frequency modes as ZB modes because of our use of the 
Debye approximation.) The mean free path of the ZB phonons decreases to 
an atomic distance so that the phonon "coalesces" onto an atom as the 
mode breaks down. The energy hogo of the coalescing phonon sets the 
atom into local harmonic oscillation in its ground state with energy of the 
order of h~o D, the energy of the "dying" phonon. This oscillation is 
superimposed upon the collective modes of motion below the ZB which 
retain their validity. The localized high-frequency independent oscillations, 
as mentioned above, will expand the lattice due to their random, 
asynchronous character. (We assume only simple crystal structures.) When 
the expansion of the lattice reaches the point that atoms have sufficient 
space to slip past each other, they will do so due to their random "thermal" 
motion. Thermal is placed in quotes, because the high-frequency single- 
particle motion involves only a small portion of the total degrees of 
freedom of the assembly, so it is not thermal in the sense of being able to 
attach a value kB T/2 to this energy for each spatial dimension. However, 
this motion must be driven by the underlying reservoir of thermal energy 
present in the assembly of particles. Once the particles are able to slip past 
each other, the liquid state has been reached, a meaningful distinction 
between oscillations and "jumps" of single-particle motion on the time scale 
of 099 is probably lost [-13], and we can think of the atoms as moving as 
free particles on this time scale, as will be discussed more fully in the 
sequel. 

Let us now focus on a single atom in its cage of neighbors on the solid 
side of the melting transition. To describe its motion we employ an 
isotropic oscillator model [-15]. The ground-state energy of such an 
oscillator is (3/2)h~o, where ~o is its fundamental frequency, which we take 
to be the Debye frequency. The rms amplitude ro of this oscillator is given 
by 

ro = [3h~D/(ZK)] m =  [3h/(2M~OD)] 1/2 (9) 

where the spring constant K=Mco~ and M is the atomic mass. As an 
example of magnitude, ro for the Na + ion in NaC1 turns out to 
3.22 • 10-1o cm. We superimpose the oscillator motion on the normal lat- 
tice structure by adding this rms amplitude to each of the "hard-sphere" 
atomic radii along the "direction of contact" of the unit cell. The hard- 
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sphere approximation is relatively good for the alkali metal halides [14]. 
Adding an increment ro for each of the positive and negative ion radii 
along the cube edge of the fcc NaCI cell will increase the lattice constant ao 
by the amount 6ad~, where 

6ado~-2[ro(+)+ro(-)]=2h[M+~/2+M-~/2]/(kBTo) ~/2 (10) 

and ( + ) and ( - ) refer to the positive and negative ions. With an increase 
in lattice constant of 6ad~, the relative change in volume of the unit cell is 

6V~o/V= (ao + 6aac)3/a 3 -  1 (11) 

The "decoupling volume effect" we wish to describe is obtained by inserting 
6ado from Eq. (10) into Eq. (11). The results of this calculation for 15 alkali 
metal halides are shown in Table I. For comparison, experimental values of 
(6Vr/V), the volume change of fusion are also shown [16, 17]. The lattice 
constants and Debye temperatures used in the calculation are also given. 
Nine of the lattice constants (indicated by citations) are values 

Table I. Comparison of Volume Change 6Vdc/V , Due to Independent Oscillations Super- 
imposed on the Lattice, with Experimental Volume Change upon Fusion (6Vs/V) exp# 

Species a0(~.) TD(K) 6a,~c(~) (~Vdc/V) (6V~/V) exp 

LiF 4.078 b 700 0.393 0.318 0.294 a 
LiC1 5.13 c 390 0.473 0.316 0.262 a 
LiBr 5.49 c 247 0.534 0.321 0.243 a 
LiI 6.00 C 175 0.604 0.333 0.202 ~ 
NaF 4.711 b 473 0.344 0.344 0.274 a 
NaCI 5.729 b 303 0.369 0.206 0.250 a 
NaBr 5.96 c 209 0.378 0.203 0.224 d 
NaI 6.46 C 153 0.410 0.203 0.186 a 
KF 5.33 c 317 0.373 0.225 0.172`/ 
KCI 6.395 b 226 0.372 0.185 0.173`/ 
KBr 6.696 b 166 0.360 0.170 0.166`/ 
KI 7.166 b 126 0.378 0.167 0.159 ̀ / 
RbC1 6.723 b 162 0.370 0.174 0.143 a 
RbBr 7.03& 130 0.329 0.147 0.135 a 
RbI 7.460 b 102 0.333 0.140 0.123 e 

a The lattice constant is denoted ao, TD is the Debye temperature in kelvins, and 
change in the lattice constant according to Eq. (10) in the text. 
b Extrapolated from the formula of Srivastava and Merchant [18]. 
c Busch and Schade [12]. 
a Ubbelohde [16]. 
e Rubcic and Rubcic [17]. 

3adc is the 
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extrapolated to the melting point from the formulas of Srivastava and 
Merchant [18]; the remainder are room-temperature values [12]. Little 
error is introduced thereby due to partial cancellation of the thermal 
expansion correction to 6Vdc/V. The Debye temperatures are room- 
temperature, elastic-constant values [19]. Equation (11) has an average 
(absolute) error of 18% compared to the listed experimental values, 
whereas the direct calculation of (3Vf/V) by Agrawal et al. [20] has a 
corresponding average error of 36%. 

4. SELF-DIFFUSION ON THE LIQUID SIDE OF THE MELTING 
POINT 

Since breakdown of ZB modes into superimposed single-particle 
oscillations leads to a consistent description of the melting transition, we 
now apply these concepts to diffusion in the liquid at Tm. Once the liquid 
state has been achieved, there is no longer a barrier to free diffusion on a 
short time/distance scale because there is sufficient space for the atoms to 
slide past each other [17, 20]. Egelstaff discusses the concept of effective 
mass noting that the true mass is used in computations of Brownian 
motion, but for a liquid, a larger mass is required because the diffusing 
atom must displace its neighbors. However, comparing diffusion mean free 
times of the present approach with those of Egelstaff, we find ours to be 
about two orders of magnitude smaller. For example, rM >~ 1/(2COD) is 
about 3 x 10-14s for metallic Na, compared to Egelstaff's [13] diffusive 
time step of 1.0-1.6• 10-12s. Similarly, for Ar, his other example, our 
value (based on a Debye temperature of 105 K [22]) is 3.6 x 10 -14  S, com- 
pared to Egelstaff's reported 10 -12 s. Thus, we feel justified in using the 
true mass, as in the Brownian motion case, rather than a larger effective 
mass. In any event, it is well established that for high-frequency, short- 
distance motion in liquids, the atoms move as in a perfect gas [-13, 21]. 
Accordingly, we use the perfect-gas diffusion equation Opg =kBT~/M to 
determine the self-diffusion coefficient. With ~ = ~ > 1/(2c0o) as in Eq. (6), 
we obtain the result 

D~<~--~ ~D 

Table II compares the results of this formula with experiment for four 
alkali halides for which experimental data were found [24]. The Debye 
temperatures used are the same as those in Table I for the three halides 
common to both tables. For CsCI, the value To = 170 was used [25]. The 
individual ionic coefficients show a factor-of-two type of agreement, while 
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Table II. Comparison of Theory and Experiment for the Ion Self-Diffusion 
Coefficients of Four Alkali Halides at the Melting Point a 

833 

Species D + (th) D_ (th) D + (exp) D (exp) 

NaC1 4.9 3.2 8.76 6.32 
RbC1 2.3 5.5 4.65 4.07 
CsC1 1.3 4.8 3.33 3.69 
NaI 8.4 1.5 6.50 3.66 

~The units are cm 2 -s 1 x 105. D+(th)  is from Eq. (12) in the text, and D+(exp) from Young 
and O'Connell [24]. 

the interdiffusion sums (D+ + D  ), except for NaCI, are in much closer 
agreement [1].  This is not surprising since both TD and Tm are joint 
properties of the ions in combination. It is more surprising that the 
agreement is as close as it is, since diffusion coefficients typically change by 
several orders of magnitude across Tm. In view of the magnitude of this 
discontinuity, prediction of a diffusion coefficient at the melting point is a 
particularly sensitive test. Cotterill et al. [26, p. 413] discuss in detail the 
orders of magnitude change in D across the fusion transition. 

Since there are not many experimental data on alkali metal halide 
diffusion coefficients, we present in Table III some comparisons for mon- 

Table IlI. A Comparison of Theory and Experiment for Some Monatomic Liquid 
Self-Diffusion Coefficients at the Melting Point a 

Species TIn(K) TD(K) D(th) D(exp) 

Ar 83.8 105 b 0.63 1.8 a 
1.6 e 

Cu 1358 332 C 2.0 4.0 f 
Zn 693 231 e 1.5 2.0 ~ 
Ga 303 89 C 1.6 1.6 a 
Ag 1235 213" 1.7 2.6 f 
Sn (white) 505 184 C 0.74 2.0 '~ 
Hg 234 37 c 1.0 0.93 d 
Pb 601 81 c 1.1 2.2 d 

a The units of D are cm 2 s -1 • 105. D (th) was obtained from Eq. (12) in the text. The melting 
and Debye temperatures T,~ and TD, respectively, are given in kelvins. 

b Keeler and Batchelder [22]. 
c Gschneidner [27]. 
d Faber [28]. 
e Egelstaff [13]. 
f Nachtrieb [21]. 
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atomic liquid elements. Elastic-constant values of T D from Gschneidner 
[27] were used where available. For Ar, Keeler and Batchelder's value 
[22] was used, and for Hg the electrical resistivity value given by 
Gschneidner was employed. The experimental values of D cited in Table III 
are from Faber [28], Nachtrieb [21], and Egelstaff [13] and are all 
quoted as being measured at or very near to the melting point. 

In this comparison of eight monatomic cases, four show more-or-less 
factor-of-two-type agreement as is the case for the alkali halide ions in 
Table II. The others are in relatively close agreement. In all cases, the 
theoretical values are less than or equal to the experimental values (subject 
to the effect of round-off), as befits the formulation of Eq. (12) as an 
approximate lower bound. Results for Li, Na, K, and In were given 
previously [1], with a 10-20% difference between experiment and theory. 

Although Eq. (12) is derived to be valid strictly at the melting point, it 
is interesting that Nachtrieb [21] identified several liquid metals (Sn, In, 
Hg) for which D continues to increase linearly with T above Tm for a wide 
span of temperatures. Hence, Eq. (12) may have more general validity than 
our derivation implies. There is another interesting aspect to this result. 
The ratio T,,/TD does not vary greatly for solids, usually being less than 
10. Hence the order of magnitude of D at the melting point is principally 
established by the factor h/(2M). The numerical magnitude of the self- 
diffusion of liquids is well known to be of the order of 10 5cm2.s-1 
[-13, 26, 29], rising typically from about 10-9cm2-s -1 just below Tm to 
10 -5 just above [13]. Nachtrieb [21] states that liquid metals, "like all 
normal unassociated liquids, have diffusion coefficients that lie in the 
narrow range 10 -4 to 10 -5 cm 2. s 1.,, Egelstaff [13] discusses this order of 
magnitude at length (phenomenologically) and states that the physical 
reasons why this magnitude is characteristic of liquids are not clear. Taking 
his two main examples of Na and Ar, we find that h/(2M) is equal to 
1.38x 10 -5 and 0.79x 10 5 respectively, compared to 4.3x 10 5 and 
1.6 x 10 -5, respectively, for D. Thus, we see that a quantum scale factor 
provides the physical basis of the observed order of magnitude. 

A more precise statement can be made in the case of a perfect gas. We 
write the energy-time HUP for a free particle of energy E =  My2/2, and 
lifetime between collisions At as 

E>~ AE>~ h/(ZAt) (13) 

where AE is the uncertainty in E. This can be taken as less than the total 
energy E under classical conditions (viz., a sufficiently large container for 
not too many atoms). If we now take a long-term time average ( ( ) )  over 
the particle motion, we get 

3kBT>~ (h/At) >~h/(dt) (14) 
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where the second step follows from Schwartz's inequality. Labeling 
{ A t )  =- ~, the mean free collision time, relation (14) can be written as 

kB Tz ~ h/(3M) (15) 
Dpg= m 

in terms of the perfect-gas diffusion coefficient Dpg introduced earlier. Thus, 
a fundamental basis exists in the context of perfect-gas theory for the order 
of magnitude of D for liquids. However, it makes sense only if the diffusive 
motion in liquids is of a sufficiently high frequency to obey the perfect-gas 
relation. Real gases tend to have self-diffusion constants several orders of 
magnitude greater than the lower limit of inequality (15). It is interesting 
that this limit is reached at the liquid state where the atomic potential 
energy, neglected for the perfect gas, becomes comparable to its kinetic 
energy. Furthermore, the limit is violated for crystals, where potential 
energy dominates the motion. The reason for this behavior is that AE ~ E 
generally, for gases, but is of the order of E for diffusive motion in liquids, 
as we have shown above. For solids, diffusive motion occurs for individual 
atoms trapped in relatively deep potential wells with energies well above 
the average atom energy, so that the uncertainty in E for such a particle is 
very large and one cannot form an inequality such as (13). These results for 
free diffusion on the short time scale dictated by the HUP may provide a 
way out of the dilemma posed by Egelstaff [13]. He presents a thorough, 
fundamental discussion of the two approaches to diffusion, the "jump" 
model and free diffusion, and points out that neither approach is satisfac- 
tory. But he argues (somewhat curiously) that these approaches span the 
totality of diffusion phenomenology because, although representing 
opposite extremes, they predict approximately the same unrealistic and 
somewhat inconsistent results [13, p. 131]. 

5. ALKALI HALIDE CONDUCTIVITY AT THE MELTING POINT 

The classical kinetic formula for electrical conductivity o- is [14] 

a = Ne2r/M (16) 

where N represents concentration of charge carriers--ions in the present 
case, e is the electric charge on the carriers, and M is the carrier mass. This 
kinetic conductivity a is not independent of the diffusion constant D. Their 
connection, known as the Nernst-Einstein relation, is given by Lidiard 
[30] as 

N e  2 
a : ~ ( D + + D  ) (17) 

840/9/5-14 
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Because of this connection, one expects a good prediction of D to imply a 
similar result for ~r, and vice versa. Considerably more experimental data 
exist for ionic conductivities than for self-diffusion coefficients for alkali 
halides at the melting point. Thus, it is worthwhile to evaluate a in order to 
obtain broader comparison with experiment. If we sum Eq. (16) over the 
( + ) and ( - )  ions, set r = (2(.OD) - 1  ~ ~'M, and evaluate the fundamental 
constants, the result can be expressed as 

5.896 x 10 -19 
a>~ (18) 

VM TD ~r 

in m h o . c m  -1. The molar volume of the liquid at Tm in cm 3 is denoted 
VM, and M is the reduced mass of the ion pair in gms. Table IV shows a 
comparison of the prediction of Eq. (18) with experiment for 18 alkali 
halides. The values of V M as well as the experimental values of a were 
obtained from Young and O'Connell [24] .  The average (absolute) 
difference between theory and experiment for these cases is 18%. Four 
percent of this average difference is due to the worst case alone, LiI. This 

Table IV. Comparison of Theory and Experiment for Ionic Conductivities in mho. cm l a 

Species VM a(th) a(exp) 

LiF 14.33 6.97 8.27 
LiC1 28.24 5.56 5.72 
LiBr 34.35 6.56 4.91 
LiI 42.81 7,21 3.97 
NaF 21.49 3.36 4.76 
NaCI 37.52 2.24 3.48 
NaBr 44.00 2.16 2.76 
NaI 54.70 2.18 2.30 
KF 30.41 2.88 3.5t 
KC1 48.79 1.73 2.15 
KBr 55.95 1.46 1.65 
KI 67.91 1.39 1.33 
RbC1 53.78 1.63 1.56 
RbBr 60.85 1.09 1.14 
Rbl 73.08 0.93 0.91 
CsF 41.33 2.26 2.47 
CsC1 60.31 1.24 1.15 
Csl 81.62 0.58 0.72 

The theoretical values a(th) have been calculated from Eq. (18) in the text. The experimental 
values a(exp) along with the liquid molar volumes VM (in cm 3) are from Young and 
O'Connell [24]. 
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case and LiBr are also the only ones for which a(th) is significantly larger 
than cr(exp), again showing consistency with the formulation of (2~oD) 1 as 
an approximate lower bound to the mean free collision time Try. The fact 
that asymmetry of the ion masses affects diffusive motion in alkali halides, 
particularly those of Li +, has been noted by Hansen and McDonald [-23]. 

6. C O N C L U S I O N  

We have presented herein a combination of fundamental statements 
based on the Heisenberg uncertainty principle and heuristic scenarios. The 
justification and outcome of the diffusion and electrical conductivity 
discussions are the strongest. The substantial range and quality of these 
predictions make them difficult to challenge. The Einstein oscillator melting 
transition model is perhaps the weakest part, depending particularly upon 
a vivid imagination, although involving only conventional ideas when 
taken one at a time. It is hard, however, to dismiss the alkali halide volume 
expansion results as accidental in view of the range and quality of the 
experimental comparison. It is important to note that the melting-point 
diffusion and electrical conductivity theory advanced is independent of the 
Einstein oscillator approach to the melting transition. Those portions of 
the present work do not appear to depend at all upon how the liquid-state 
transition is achieved. 

However, the difficulty of formulating a complete fundamental 
theoretical justification of the suggestions advanced in this article is sub- 
stantial. The mixture of single-particle and collective description required 
for such a justification requires new theory of a formidable nature. It is 
hoped that the approach presented herein will stimulate this difficult under- 
taking. 
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